Дирихле интеграл - определение. Что такое Дирихле интеграл
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Дирихле интеграл - определение

Дирихле задача; Проблема Дирихле
  • Решение задачи Дирихле на кольце с краевыми условиями: <math>u(2,\varphi)=0</math>, <math>u(4,\varphi)=4 \sin (5\varphi)</math>

Дирихле интеграл      
(по имени П. Г. Л. Дирихле)

название интегралов нескольких типов.

1) Интеграл

Этот Д. и. называется также разрывным множителем Дирихле и равен π/2 при β < α, π/4 при β = α и 0 при β > α. Таким образом, Д. и. (1) является разрывной функцией от параметров α и β. Дирихле использовал интеграл (1) в своих исследованиях о притяжении эллипсоидов. Впрочем, этот интеграл встречается ранее у Ж. Фурье, С. Пуассона и А. Лежандра.

2) Интеграл

где

есть так называемое ядро Дирихле. Этот Д. и. равен n-й частичной сумме

ряда Фурье функции f (х). Формула (2) является одной из важнейших формул теории рядов Фурье, в частности, позволившей Дирихле установить, что ряд Фурье функции, имеющей конечное число максимумов и минимумов, сходится в каждой точке.

3) Интеграл

Подробнее см. Дирихле принцип (в теории гармонических функций).

Задача Дирихле         
Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Петера Густава Дирихле.
Дирихле задача         
(по имени П. Г. Л. Дирихле)

задача об отыскании гармонической функции (См. Гармонические функции) по её значениям, заданным на границе рассматриваемой области.

Википедия

Задача Дирихле

Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Петера Густава Дирихле.